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Abstract—Intelligent Transportation System has emerged as
a promising paradigm providing efficient traffic management
while enabling innovative transport services. The implementation
of ITS always demands intensive computation processing under
strict delay constraints. Machine Learning empowered Mobile
Edge Computing (MEC), which brings intelligent computing
service to the proximity of smart vehicles, is a potential approach
to meet the processing demands. However, directly offloading
and calculating these computation tasks in MEC servers may
seriously impair the privacy of end users. To address this prob-
lem, we propose federated learning empowered MEC schemes,
which utilize onboard computation resources of smart vehicles
and road side units for task processing while leveraging road side
edge service to improve vehicular computing power in a privacy-
protected way. Numerical results demonstrate the effectiveness
of our schemes.

Index Terms—Federated Learning, MEC, Vehicular networks

I. INTRODUCTION

By integrating information and communication technologies
into traffic management, Intelligent Transportation Systems
(ITS) has emerged as an appealing paradigm to bring safe,
efficient and sustainable transportation networks [1]. In the
operation of ITS, various types of data, such as vehicle
driving pattern, pedestrian behavior characteristics and road
congestion states, are detected and analyzed, which constitute
the information basis of traffic management and scheduling.

Along with the proliferation of smart vehicles and powerful
traffic sensors, the amount of gathered data has evolved from
terabytes to petabytes [2]–[4]. These massive data sets pose
a critical challenge on ITS system to process them efficiently
under strict delay constraints. Machine Learning (ML) empow-
ered Mobile Edge Computing (MEC), which offers intelligent
computation capabilities at the edge of mobile networks, is a
potential approach to meet the data processing demands. In
[5], the authors proposed a deep reinforcement learning based
edge resource allocation strategy to achieve optimal costs of
vehicular networks. In [6], the authors introduced an energy
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efficient computation task scheduling scheme in an enhanced
learning approach. Although ML inspired edge computing
brings an efficient approach to alleviate computation burdens
of smart vehicles, the implementation of edge service requires
task data be directly transmitted to MEC servers, and data
privacy may be leaked during this transmission.

Federated Learning (FL) is a promising technique to ad-
dress the security problem. FL secures data privacy through
training learning model across multiple decentralized edge
devices holding local data samples, without exchanging their
data samples. Recently, a few works have been carried out
focusing on FL. In [7], the authors investigated gradient de-
scent based FL and minimized operation costs under resource
budget constraints. The authors in [8] used multi-objective
evolutionary algorithm to optimize the structure of neural
network model in FL. In [9], the authors developed a FL-based
communication network with dynamic, heterogeneous, and
intermittent resource availability. In [10], the authors applied
FL to edge computing system with dynamic workload and
radio environment. In [11], the authors proposed a FL-enabled
power and resource allocation scheme.

In the above works, FL is rarely used in vehicular networks
and the authors always took the assumption that agents of
FL are definite. However, as roadside computing and caching
resources are distributed between the road side unit(RSU)
and the vehicle, there are many options for agents in FL
empowered MEC. Considering constrained onboard resources
and complex vehicle communication environment, the agent
choices may seriously undermine processing delay and costs
performance. Thus, aforementioned monotonous calculating
and offloading strategies that ignore the complexity of vehicu-
lar network are insufficient to accurately make FL empowered
MEC agents selection. The main contribution of this work is
listed as follows.
• We propose a FL empowered MEC architecture that

combines FL with Internet of Vehicles to solve MEC
problems.

• We propose an independent-agent selection scheme for
FL in vehicular networkS, where the vehicle acts as its
own agent.

• We extend independent-agent selection scheme to multi-
agent selection scheme, where high-credibility vehicles
and RSUs with MEC servers are considered, and design



Fig. 1. FL empowered MEC in the vehicular network

an efficient task selection algorithm to minimize its costs.
The rest of the paper is organized as follows. The system

model is presented in Section II. In Section III, we propose an
independent-agent selection scheme. In Section IV, we propose
a multi-agent selection scheme, formulate an optimization
problem and design an efficient algorithm to solve it. We
present numerical results in Section V and conclude the paper
in Section VI.

II. SYSTEM MODEL

Fig. 1 shows the FL empowered MEC in vehicular net-
works. We consider that there are N vehicles on the road. The
computing and caching capacities of each vehicle are denoted
as fv and cv , respectively. Through real-time communication
with surrounding vehicles and roadside sensors, vehicles can
obtain much local traffic environment information, such as
geographical location, traffic lights, vehicle speed, etc. These
local data sets of local traffic environment information can be
used by vehicles to model their driving path, driving speed,
etc [12].

In addition, M RSUs equipped with MEC servers are
randomly distributed along the road. All RSUs can provide
computing and caching services for vehicles on the road,
and their computing and caching capacities are denoted as{
fR1 , ..., f

R
M

}
and

{
cR1 , ..., c

R
M

}
, respectively.

In vehicular networks, the local traffic environment around
vehicle changes dynamically. Due to the limited communica-
tion range of vehicle, the information that vehicle can collect
independently is very limited. If vehicle v only processes
its own local data set, then the automatic driving model
established by vehicle v will be limited and not applicable
to the dynamically changing traffic environment. Therefore,
compared with the independent modeling of each vehicle, we
prefer to use ML empowered MEC approach to merge and
process local data sets of different vehicles in various traffic
scenarios and give a suitable autonomous driving model for
various traffic scenarios [13].

Although a ML empowered MEC approach can reach a
good autonomous driving model, it does not protect the
privacy of vehicles and may have a large communication
costs. Thus, we consider adopting the FL empowered MEC

approach to handle autonomous driving tasks in the vehicular
networks. Different from other ML, FL is more flexible, more
secure and more fault-tolerant, which can also reduce the
communication pressure of the whole network. A FL-based
autonomous driving task g can be described by four terms
as Ag =

{
σg, ϑg, sg, T

max
g

}
, where σg is the local accuracy

of FL, ϑg is the global accuracy of FL, sg is the size of
parameters obtained after local training, and Tmax

g is the
maximum tolerable delay of task g.

The core network acts as the upper-level aggregation of FL
and can communicate directly with the RSU. The transmission
rates of RSU to the core network (R2C) and the core network
to RSUs (C2R) are rR2C and rC2R, respectively. And the
communication between the vehicle and the core network
requires the RSU’s forwarding functions. rR2V and rV 2R

are the transmission rates of RSUs to vehicles (R2V) and
vehicles to RSUs(V2R), respectively. Moreover, different com-
munication methods will generate different communication
costs. The communication unit prices between vehicles and
vehicles, vehicles and RSUs, and RSUs and core network can
be denoted as wV 2V , wV↔Rm and wR↔Cm respectively. Due to
the different location deployments and transmission distances
of RSUs, the contact rates between various RSUs and vehicles
are different, which are denoted as

{
λR1 , ..., λ

R
M

}
respectively.

The contact rate between the two vehicles is λv .
Since both vehicle and RSU can provide computing and

caching resources for task g, they both can act as agents for the
task. The different agent selection schemes will be described
in detail below.

III. THE VEHICLE ACTS AS ITS OWN AGENT

The training process of FL in the vehicular network is
mainly divided into four processes: 1) Agents are selected
and each agent individually trains its own local sample data
set until it reaches local accuracy σg . 2) The result parameters
of local calculation are uploaded to the core network by the
agent. 3) Each calculated result parameter is integrated in the
core network. The new parameters after integration have the
same size sg and are downloaded by each agent for the new
local iteration training. 4) Repeat steps 1 to 3 until global
accuracy ϑg is reached at the core network. And in the local
training of step 1, vehicles will provide agents with their local
data sets of size dvg for agents to train the model.

In this section, we propose a scheme that the smart vehicles
act as their own agents. Each vehicle acts as a FL agent,
processing and training its own local data set, and then
communicates with the core network via different RSUs to
update its training result parameters.

Time for vehicle v to compute its local data set once is

T compself,v =
dv,g
fv

. (1)

Time for vehicle v to upload the result parameters to the
core network via RSU m is

Tuploadself,v,m =
sg
rV 2R

+
sg
rR2C

. (2)



Time for vehicle v to download the updated result parame-
ters from the core network via RSU m is

T downloadself,v,m =
sg
rC2R

+
sg
rR2V

, (3)

Thus, total time for vehicle v act as agent to complete task
g via RSU m is

T totalself,v,m=
F (ϑg)
1−σg

[
K log (1/σg)T

comp
self,v + Tuploadself,v,m

+T downloadself,v,m + 1/λRm

]
.

(4)

Klog (1/σg) is the number of local iterations of the vehicle
[5], and positive constant K depends on the data size and
condition number of task g. F (ϑg)/1 − σg is the general
upper bound on global iterations. And 1/λRm is the time for
the vehicle encountering RSU m.

Costs for vehicle v to complete task g via RSU m is mainly
the communication costs, and can be denoted as

Ototalself,v,m =
2F (ϑg) sgN

1− σg
(
wR↔Vm + wR↔C

)
. (5)

The task may have different costs and latency performance
due to various parameter communication strategies. And the
optimal FL empowered MEC in vehicular networks should
minimize the total costs under delay constraint Tmax

g . Thus,
the problem can be formulated as

min
ptrans
m,v

M∑
m=1

ptransv,m Ototalself,v,m

s.t.C1 0 ≤ ptransv,m ≤ 1,m ∈M

C2
M∑
m=1

ptransv,m T totalself,v,m ≤ Tmax
g

C3
M∑
m=1

ptransv,m = 1,m ∈M,

(6)

where, ptransv,m ∈
{
ptransv,1 , ..., ptransv,M

}
is the probability that

vehicle v selects RSU m to transmit parameters and com-
municate with the core network. Constraint C1 gives the
ranges of decision variable ptransv,m . Constraint C2 indicates that
vehicle should compute task g under its delay constraint, and
constraint C3 indicates that the vehicle should select one of M
RSUs as the uploading object. Using the traditional lagrangian
multiplier method and KKT condition, the above optimization
problem can be solved.

IV. MULTI-AGENT SELECTION SCHEME

In this section, we extend the independent-agent selection
to the multi-agent selection scheme. We investigate the effects
of multi-agent selection on costs and delay, and design a sub-
gradient descent inspired algorithm to obtain the optimal agent
selection and parameter communication strategies.

A. Costs and delay effects with multi-agent selection

Due to the complex communication environment of vehicu-
lar networks, as well as the caching and computing resources
of RSUs and vehicles, in addition to the vehicle itself, the
vehicle with high credibility can also be selected as the agent.
We describe different possibilities as follows.

1) High-credibility vehicle as agent: In vehicular networks,
there are quite a few vehicles with high social credibility,
such as police vehicles, fire trucks, etc., which can act as
agents to process data sets collected from surrounding vehicles
and communicate with the core network via RSUs to update
training parameters. Thus, compared to the scheme proposed
in section III, when a high-credibility vehicle acts as the agent,
there is an additional data collection process in which each
ordinary vehicle will send its local data set to the agent. High-
credibility vehicles select themselves as their agents.

Time for high-credibility vehicle n to collect data for task
g is

T collectmul,v,n = pmulv,n N
∗
(
dv,g
rV 2V

+
1

λv

)
, (7)

where, pmulv,n is the probability that ordinary vehicle selects
high-credibility vehicle n as agent. rV 2V is the transmission
rate of V2V. Thus, the amount of the vehicle that selects
vehicle n as agent is pmulv,n N

∗, where N∗ = N − N tru and
N tru is the amount of the high-credibility vehicle. The rest of
formula is time taken by vehicle n to collect a data set, and
1/λv is time for vehicle encountering.

Time for high-credibility vehicle n to compute the data set
it collected once is

T compmul,v,n =
[
pmulv,n N

∗ + 1
] dv,g
fv

. (8)

where the upload and download time for high-credibility
vehicle n to communicate with core network via RSU m
are Tuploadmul,v,n,m = sg/rV 2R + sg/rR2C , and T downloadmul,v,n,m =
sg/rR2V + sg/rC2R respectively

Total time for high-credibility vehicle n act as agent to
complete task g via RSU m is

T totalmul,v,n,m=
F (ϑg)
1−σg

[
K log (1/σg)T

comp
mul,v,n+

Tuploadmul,v,n,m + T downloadmul,v,n,m + 1
λR
m

]
+ T collectmul,v,n.

(9)

When the vehicle acts as its agent independently in section
III, it only have to pay the communication costs. However,
when the vehicle chooses to select a high-credibility vehicle
or RSU as agent, it not only needs to pay the communication
costs, but also needs to pay the computing and caching costs.
And it is obvious that the selection of choosing a high-
credibility vehicle or RSU as agent has significantly less
communication costs than choosing vehicle itself as agent.

Total costs for high-credibility vehicle n act as agent to
complete task g via RSU m is

Ototalmul,v,n,m = pmulv,n (N∗) dv,gw
cache
v,n

+
F (ϑg)K log(1/σg)

1−σg
pmulv,n N

∗dv,gw
comp
v,n

+
2F (ϑg)sg

1−σg

(
wR↔Vm + wR↔C

)
+pmulv,n N

∗dv,gw
V 2V ,

(10)

where, wcompv,n is the unit price of computing resource of
vehicle n. wcachev,n is the unit price of caching resource of
vehicle n. The first and second parts of formula are computing
and caching costs when the vehicle chooses vehicle n as the



agent. And the third part is the communication costs of this
scheme.

2) RSU with MEC server as agent: In the urban traffic
environment, many RSUs equipped with MEC servers are
distributed around the road, which can provide a variety
of computing and caching services for vehicles within their
communication range. Thus, these RSUs can also act as the
agents to process the data sets collected from surrounding
vehicles, and communicate directly with the core network.

Vehicles that choose RSU m as their agent will first send
their data sets to RSU m. Time for RSU m to collect data for
task g is

T collectmul,R,m = pmulR,mN
∗
(
dv,g
rV 2R

+
1

λRm

)
. (11)

pmulR,m is the probability that the ordinary vehicle selcects RSU
m as the agent.

Time for RSU m to compute the data sets once is

T compmul,R,m = pmulR,mN
∗ dv,g
fRm

. (12)

The upload and download time for RSU to communicate
with core network are Tuploadmul,R,m = 1/rR2C , and T downloadmul,R,m =
1/rC2R respectively.

Obviously, the effect of RSU acting as agent to handle task
g on task delay is

T totalmul,R,m=
F (ϑg)
1−σg

[
K log (1/σg)T

comp
mul,R,m+

Tuploadmul,R,m + T downloadmul,R,m

]
+ T collectmul,R,m.

(13)

The effect of RSU as agent on costs is

Ototalmul,R,m =
F (ϑg)K log(1/σg)

1−σg
pmulR,mN

∗dv,gw
comp
R,m

+
2F (ϑg)sg

1−σg
wR↔C + pmulR,mN

∗dv,gw
R↔V
m

+pmulR,mN
∗dv,gw

cache
R,m .

(14)

wcompR,m is the unit price of computing resource of RSU m.
wcacheR,m is the unit price of caching resource of RSU m. The
first and third parts of formula are computing and caching
costs when vehicle chooses RSU m as agent. The second part
is the communication costs of this scheme.

B. Problem formulation and a sub-gradient descent approach

The task may have different costs and delay performance
due to various communication strategies of parameters and
agent selection schemes. For task g, costs and delay of FL
empowered MEC in the vehicular network can be denoted as

Ototalg = pselfv

M∑
m=1

ptransv,m Ototalself,v,m +
M∑
m=1

pmulR,m

Ototalmul,R,m +
Ntru∑
n=1

pmulv,n

M∑
m=1

ptransn,m Ototalmul,v,n,m,

(15)

T totalg = pselfv

M∑
m=1

ptransv,m T totalself,v,m +
M∑
m=1

pmulR,m

T totalmul,R,m +
Ntru∑
n=1

pmulv,n

M∑
m=1

ptransn,m T totalmul,v,n,m,

(16)

where, pselfv is the probability that vehicle chooses itself
as agent. pmulv,n is the probability that vehicle chooses high-
credibility vehicle as agent. And pmulR,m is the probability that
vehicle chooses RSU as agent. ptransn,m is the probability that
high-credibility vehicle communicates with core network via
RSU m.

The minimum costs of FL empowered MEC in vehicular
network under maximum tolerable delay constraint can be
formulated as

min
{pselfv ,pmul

R,m,p
mul
v,n ,p

trans
v,m ,ptrans

n,m }
Ototalg

s.t.C1 0 ≤ pselfv , pmulR,m, p
mul
v,n , p

trans
v,m

, ptransn,m ≤ 1, n ∈ N tru, m ∈M
C2 T totalg ≤ Tmax

g

C3
M∑
m=1

ptransv,m = 1

C4
M∑
m=1

ptransn,m = 1, n ∈ N tru

C5 pselfv +
M∑
m=1

pmulR,m +
Ntru∑
n=1

pmulv,n = 1

C6 pmulv,n N
∗dv,g ≤ cv, n ∈ N tru

C7 pmulR,mN
∗dv,g ≤ cRm, m ∈M.

(17)

Constraint C1 gives the ranges of decision variables. Con-
straint C2 indicates maximum tolerable delay constraint of task
g. Constraint C3 and C4 indicate that if the vehicle as an agent
wants to communicate with core network, it must be relayed
through RSU. Constraint C5 indicates that each vehicle should
select an object as its agent within the scope of RSUs, high-
credibility vehicles, and itself. Constraints C6 and C7 indicate
that the data set collected by vehicles and RSUs should not
exceed their maximum caching capacities.

Since the target function in (17) contains the product of
multiple variables, it is a non-convex problem. We consider
using subgradient descent algorithm combined with lagrangian
multiplier method to obtain the minimum costs strategy. The
lagrangian relaxation function of target problem takes the
form in (18), where U =

{
U1, U2, ...,U15,U16

}
,U ∈

R,U1, U2, ...,U10, U11,U15,U16 ≥ 0. And P ={
pselfv , pmulR,m, p

mul
v,n , p

trans
v,m , ptransn,m

}
, n ∈ N tru,m ∈M .

The Lagrangian dual problem of (18) under the domain
constraint of dual variables can be denoted as

max
U

g (U) = max
U

inf
P

L (P,U)
s.t. U1, U2, U11, U12, U14 ∈ R, U3,U4,U5,U6,

U16 ∈ R1×M ,U7,U8,U13,U15 ∈ R1×Ntru

, U9,

U10 ∈ RM×Ntru

, U1, U2,U3,U4,U5,U6,U7,U8,
U9,U10, U11,U15,U16 ≥ 0

(19)

By differentiating L (P,U) with respect to pselfv , pmulR,m,
pmulv,n , ptransv,m , ptransn,m and let them equal to zero under the
constraints, we can get a feasible solution of inf

P
L (P,U) for

the given multipliers U. Then we update the multipliers U by



L (P,U) = Ototalg − U1
(
pselfv − 1

)
+ U2pselfv −

M∑
m=1

U3
m

(
pmulR,m −1) +

M∑
m=1

U4
mp

mul
R,m −

M∑
m=1

U5
m

(
ptransv,m − 1)+

M∑
m=1

U6
mp

trans
v,m −

Ntru∑
n=1

U7
n

(
pmulv,n −1) +

Ntru∑
n=1

U8
np

mul
v,n −

Ntru∑
n=1

M∑
m=1

U9
n,m

(
ptransn,m − 1) +

Ntru∑
n=1

M∑
m=1

U10
n,mp

trans
n,m −

U11
(
T totalg − Tmax

g

)
+ U12

(
M∑
m=1

ptransv,m − 1

)
+
Ntru∑
n=1

U13
n

(
M∑
m=1

ptransn,m − 1

)
+ U14

(
pselfv +

M∑
m=1

pmulR,m+

Ntru∑
n=1

pmulv,n −1)−
Ntru∑
n=1

U15
n

(
pmulv,n (N− N tru) dv,g − cv)−

M∑
m=1

U16
m

(
pmulR,m (N −N tru) dv,g − cRm

)
.

(18)

subgradient descent to get the maximum value of g (U), which
can be denoted as (20),

U1 (t+ 1) =
[
U1 (t)−

(
pselfv − 1

)
τ
]+
,

U2 (t+ 1) =
[
U2 (t) + pselfv τ

]+
,

U3
m (t+ 1) =

[
U3
m (t)−

(
pmulR,m − 1

)
τ
]+
,

U4
m (t+ 1) =

[
U4
m (t) + pmulR,mτ

]+
,

U5
m (t+ 1) =

[
U5
m (t)−

(
ptransv,m − 1

)
τ
]+
,

U6
m (t+ 1) =

[
U6
m (t) + ptransv,m τ

]+
,

U7
n (t+ 1) =

[
U7
n (t)−

(
pmulv,n − 1

)
τ
]+
,

U8
n (t+ 1) =

[
U8
n (t) + pmulv,n τ

]+
,

U9
n,m (t+ 1) =

[
U9
n,m (t)−

(
ptransn,m − 1

)
τ
]+
,

U10
n,m (t+ 1) =

[
U10
n,m (t) + ptransn,m τ

]+
,

U11 (t+ 1) =
[
U11 (t)−

(
T totalg −Tmax

g

)
τ
]+
,

U12 (t+ 1) = U12 (t) +

(
M∑
m=1

ptransv,m − 1

)
τ,

U13
n (t+ 1) = U13

n (t) +

(
M∑
m=1

ptransn,m − 1

)
τ,

U14 (t+ 1) = U14 (t) +
(
pselfv +

M∑
m=1

pmulR,m +
Ntru∑
n=1

pmulv,n − 1) τ,

U15
n (t+ 1) =

[
U15
n (t)−

(
pmulv,n N

∗ dv,g − cv) τ ]
+

U16
m (t+ 1) =

[
U16
m (t)−

(
pmulR,mN

∗ dv,g − cRm
)
τ
]+
,
(20)

where τ is step size of multipliers in each iterative update,
and [b]

+
= max (b, 0). The main steps of proposed optimal

agent selection and parameters communication scheme of FL
empowered MEC are shown in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of proposed
independent-agent selection scheme and multi-agent selection
scheme. We consider 5 RSUs with various contact rates λRm,
whose computing capacities are randomly taken from (250,
500) units. There are 200 vehicles on the road, eight of
which are high-credibility vehicles. The computing capacities
of these vehicles are uniformly distributed in (50,300) units.
For the convenience of calculation, we consider that the global
accuracy ϑg of generated autopilot task is fixed, and local
accuracy σg is randomly chosen from (0.2,0.7) units.

Fig.2 compares the costs of task g with different selec-
tions of agents. Compared with the independent-agent scheme

Algorithm 1 Sub-gradient based multi-agent selection algo-
rithm for FL empowered MEC in the vehicular network

1: Initializes the lagrangian multiplier sets U(t) ={
U1(t), U2(t), ...,U15(t),U16(t)

}
, t = 0 under the con-

straint of (19)
2: for The number of iterations t ∈ [0, 1, 2, ..., tmax] do
3: Based on the multiplier sets U(t), solve the following

equations,

dL(P,U)
dpselfv

= dL(P,U)
dpmul

R,m

= dL(P,U)
dpmul

v,n
= 0

dL(P,U)
dptrans

v,m
= dL(P,U)

dptrans
n,m

= 0
M∑
m=1

ptransv,m = 1

M∑
m=1

ptransn,m = 1, n ∈ N tru

pselfv +
M∑
m=1

pmulR,m +
Ntru∑
n=1

pmulv,n = 1.

Obtain the feasible solutions pselfv , pmulR,m, pmulv,n , ptransv,m

and ptransn,m of inf
P
L (P,U);

4: Update the multiplier set U(t + 1) in next iteration
according to (20);

5: if U (t+ 1)− U (t) ≤ ε then
6: Return pselfv , pmulR,m, pmulv,n , ptransv,m and ptransn,m ;
7: Break;
8: else
9: Continue;

10: end if
11: end for

proposed in III, the random-agent selection and multi-agent
selection which consider the effects of different agent choices
and communication methods on delays and costs, have lower
costs performence. And our proposed multi-agent selection
scheme has the lowest costs than the other two schemes
with various local accuracy. Thus, extending RSUs and high-
credibility vehicles as agent candidates can greatly reduce
the communication costs, and can also protect the privacy
of vehicles. Moreover, since the global accuracy is fixed, the
local accuracy will influence the number of local iterations
and global iterations. The higher the local accuracy (closer
to 1) is, the greater the number of global iterations will be. It



Fig. 2. Comparison on costs performance with different agent selections

Fig. 3. Costs of task g with different computation capacity of smart vehicles
fv

can be seen from Fig.2 that the local accuracy has a significant
impact on the costs of the independent-agent selection scheme,
but has little effect on the multi-agent selection scheme, as ex-
orbitant global iterations will lead to expensive communication
costs. Therefore, the multi-agent selection scheme has better
practicality in the complex vehicular network.

Fig.3 shows the impact of vehicle computing capacity
and contact rate on system costs. As the vehicle’s com-
puting capacity increases, the task costs decreases. In most
realistic scenarios, RSUs and high-credibility vehicles have
lower communication costs as agents, but their performance
on time delay is very poor and may not satisfy the delay
constraint. However, this contradiction can be mitigated as the
computing capacities of vehicles increase. Therefore, in this
case, the vehicle is more likely to choose the vehicle with
high credibility as its agent to obtain the optimal task costs.
The performance of agent selection probability with increasing
computation capacities of smart vehicles is shown in Fig.4 in
detail. With the improvement of the computing capacities of
vehicles, the average probability of choosing high-credibility
vehicles as agents increases.

VI. CONCLUSION

In this paper, we investigated MEC problem based on FL
algorithm in the vehicular network, and proposed two effective
FL agent selection schemes. By leveraging subgradient descent
algorithm combined with lagrangian multiplier method, we

Fig. 4. The performance of agent selection probability with different com-
putation capacity of smart vehicles fv

indicated the optimal FL agent selection strategy for in the ve-
hicular network. Numerical results demonstrated the improved
costs of our proposed schemes.
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